

Welcome to FES 510(e) Introduction to Statistics in the Environmental Sciences

Syllabus Overview

- On CANVAS under web page and syllabus. Updated periodically.

Videos

To Flip or Not to Flip ...
Why l'm here...
Your Questions ...

FES 510

Things to Do BEFORE TUESDAY

- Make Sure you have FES 510 or FES 510e on your list of classes on CANVAS - you should be added automatically if you've registered on Yale SIS : http://www.yale.edu/sis.
- Sign up for MINITAB intro session if you like (don't bother if you're doing flipped) : www.reuningscherer.net/MINITAB
- PRINT OUT NOTES if you want hardcopy - available in resources folder online
- Get a clicker/card at Bass Library Circulation Desk

What is Statistics?

- Like dreams, statistics are a form of wish fulfillment - Jean Baudrillard

More charitable view :

- Statistics is the art of stating in precise terms that which one does not know. - William Kruskal

In other words :

- Statistics is about quantifying VARIATION (De Veaux et all)

Statistics helps us address hard questions.

- Will Hillary win? (Two-sample test of proportions / logistic regression)
- Does RoundupTM really degrade into harmless substances after the specified amount of time? (ANOVA)
- Does street cannabis impair brain function in MS patients? (two-sample t-test)
- Is global warming happening in CT? (regression)
- Does the probability of a woman washing her hands in the Kmart bathroom change if she knows she's being watched? (Hypothesis Testing for Binomial)

Example : which animals kill the most humans?

What will we cover?

Another Definition of Statistics :
"The science of collecting, organizing, and interpreting numerical facts, which we call data." (Moore and McCabe)

I Organizing - how to look at the data!

- distributions, graphical displays (histograms, boxplots,...)
- numerical summaries (mean, median,
 standard deviation,...),
- Normal distributions
- more than one variable: correlation, regression

II Collecting (and producing) data : Sampling, bias, design of experiments, randomization

Probability (need for Interpretation) Random variables, rules of probability, c probability, Bayes' rule, binomial \& Normal distributions, Central Limit Theorem

III Interpreting data -- Statistical inference

- Confidence intervals
- Hypothesis testing
- Advanced Techniques (mostly in sections)
- Regression
- ANOVA
- Multiple Regression

Statistical Inference (what's in the bag . . ?)

Usual research situation:

- We have a question about a population.
- We take a sample of individuals from the population.
- Quantify our question with a parameter, a number describing the population.
- Using our sample, calculate a statistic: a number describing the sample.
Note: the \mathbf{P} 's and \boldsymbol{S} 's go together

Population	$\leftarrow \rightarrow$	Parameter Sample
Statistic		

SO : If we design our statistics wisely

- We INFER that what we observe about our sample is true of the population
- That is, we infer that our sample statistic approximates the population parameter.

Goal of Statistical INFERence : quantify the success of our approximation!!

Example : Online Article. Discussed in class
Population, parameter, sample, statistic?

Data - the Statistician's Raw Material (Cartoon Guide)

Data consists of values of some variables measured on individuals from a population.

Population	Individual - a noun	Variable - a characteristic of the individual
All adults in 18 countries $\frac{\text { http://news.nationalgeographic.com/news/2014/09/140926 }}{\text { greendex-national-geographic-survey-environ }}$ attitudes/	Person	Greendex Score (level of sustainable consumer behavior)
A frog egg mass	Hatched tadpole	Death temperature when boiled
Past 10 years	An hour of trading on the futures market	Oil spot price

Who calpes?l?

Different statistical tools have been developed for different kinds of data. What tools you use depends on the kind of data you collect and what you want to know

Let's suppose you have some data - now what do you do?!?!?

Displaying Data

Before you try fancy statistical analyses, always make some data displays
(A picture is worth a thousand data points!)

Statistical Graphics :

- Reveal patterns that numbers do not
- Show important patterns and relationships in your data (more on this in regression!!!)
- A concise, effective way to tell others about your data.

Example : Crimean War. March 1854, Russia defeats a Turkish fleet in the Black Sea, threatening British and French shipping who join the war against Russia. They fight on the Crimean Peninsula through 1856, ultimately defeating Russia at a cost on all sides of some 300,000 lives.

Florence Nightingale was one of the nurses with the British army during the conflict. She began to keep meticulous records on her patients. Her records probably looked something like this :

Soldier	Regiment	Date of Death	Cause of Death
Frank Butler	$13^{\text {th }}$ Light Cavalry	$10 / 15 / 1855$	Cholera
George Parson	$7^{\text {th }}$ Infantry	$10 / 15 / 1855$	Cholera
Michael Summers	$13^{\text {th }}$ Light Cavalry	$10 / 15 / 1855$	Horse Kick
Matthew Green	$14^{\text {th }}$ Infantry	$10 / 16 / 1855$	Gunshot
$\ldots . .$.			

In total, Nightingale records nearly 18,000 deaths in army hospitals during a two year period.

FES 510

Making Statistical Graphs Step 1 : Make piles

Frequency Table - gives number of individuals at each level of a variable.
Nightingale examined deaths in her hospital between April, 1854 and March, 1856. Three categories : deaths as due to battle wounds, deaths due to preventable disease, and other causes (various) :

Cause of Death	Number of Deaths
Wounds	1758
Disease	14476
Other	1748
Total	17982

Making Statistical Graphs Step 2 : Turn piles into pictures

Bar Chart : AREA = RELATIVE FREQUENCY

MINITAB: use Graph \rightarrow Bar Chart and choose SIMPLE. You can enter raw data or summarized data (for summarized data, click on DATA OPTIONS, choose FREQUENCY, and enter the variable with the summarized counts).

SPSS: SPSS has a Chart Builder which lets you drag variables. This works fine. You can also use Graphs \rightarrow Legacy Dialogs \rightarrow Bar. Choose Simple. For the Nightingale data, choose Bars Represent OTHER and then SUM (Number_Dead). Category Axis is Death_Cause

- Bar heights gives the count of observations in each death category. This is called the distribution of the variable cause of death

A Distribution gives

- A list of all possible values of a variable (i.e. list of all possible causes of death)
- The frequency with which each value of the variable occurs (i.e. how many deaths from disease, how many from wounds, how many from other causes).

Sampling Distribution : distribution of a SAMPLE (known and measured)

Population/True Distribution : distribution of the entire population (unknown and estimated with sampling distribution!!)

Example : Gender : Two values : M, F

Sampling Distribution : Sample of size 10 yields ?- draw a histogram

True distribution : (about .5, .5)

Height : Range of possible values?

Pie Chart - advantage is that it clearly shows relative proportion in each category.

AREA = RELATIVE FREQUENCY

FES 510
Intro Environmental Stats : Fall 2016-J Reuning-Scherer

MINITAB : use Graph \rightarrow Pie Chart. For this example, choose Chart Values from a Table. Enter variables in the appropriate boxes.
SPSS: Graphs \rightarrow Legacy Dialogs \rightarrow Pie. Choose
Simple. For the Nightingale data, choose Summaries for groups of cases. Define Slices by Death_Cause, Slices Represent Number_Dead.

Sometimes, want to consider two categorical variables at the same time. Use a two-way or contingency table to display this information : each cell contains the count of individuals who had a combination of categorical characteristics.
Example : Crimean War. Nightingale recorded deaths in each category for each month over a two year period :

Date	Died of Wounds	Died of Disease	Died of Other Causes	Total Deaths	\% Disease Deaths
Apr_1854	0	1	5	6	0.17
Mav 1854	0	12	9	21	0.57
Jun 1854	0	11	6	17	0.65
Jul 1854	0	359	23	382	0.94
Auq 1854	1	828	30	859	0.96
Sep 1854	81	788	70	939	0.84
Oct 1854	132	503	128	763	0.66
Nov 1854	287	844	106	1237	0.68
Dec 1854	114	1725	131	1970	0.88
Jan 1855	83	2761	324	3168	0.87
Feb 1855	42	2120	361	2523	0.84
Mar 1855	32	1205	172	1409	0.86
Apr 1855	48	477	57	582	0.82
May 1855	49	508	37	594	0.86
Jun 1855	209	802	31	1042	0.77
Jul 1855	134	382	33	549	0.7
Aud 1855	164	483	25	672	0.72
Sep 1855	276	189	20	485	0.39
Oct 1855	53	128	18	199	0.64
Nov 1855	33	178	32	243	0.73
Dec 1855	18	91	28	137	0.66
Jan 1856	2	42	48	92	0.46
Feb 1856	0	24	19	43	0.56
Mar 1856	0	15	35	50	0.3
Total	1758	14476	1748	17982	

Bar Chart - can include frequencies for two categorical variables.

Here is bar chart for first 9 months of Crimean War hospital data :

MINITAB : use Graph \rightarrow Bar Chart and choose Cluster. You can enter raw data or summarized data (for summarized data, click on DATA OPTIONS, choose FREQUENCY, and enter the variable with the summarized counts). Clustered. Then proceed as before, but Define Clusters by Death_Cause, Catogory Axis as Month_Year.

Here is how F. Nightingale displayed frequencies for two categorical variables (time and death category): this is a Polar Graph (first one!!)

Features of Graph :

- Clearly shows frequencies in three categories of death over time.
- Allows comparisons of years - note change between winter of 1854 and winter 1855 (after Nightingale presented year one figures to army brass and got major improvements in sanitation

Nightingale saved thousands of lives using statistical graphics!

Making Statistical Graphs Step 1 : Make piles

1) Sort data from low to high :
1.1, 1.1. 1.2, 1.2, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.3, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.4, 1.5, 1.5 , 1.5,
$1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.6,1.7,1.7,1.7,1.7,1.7,1.7$
$1.7,1.7,1.7,1.7,1.7,1.7,1.8,1.8,1.8,1.8,1.8,1.8,1.8,1.8,1.8,1.8,1.8,1.8,1.8,1.8,1.9,1.9$, etc.
2) Make equal sized data ranges and count the number of observations in each range :
Range
0.75 to 1.25
1.25 to 1.75
1.75 to 2.25
Etc.

Making Statistical Graphs Step 2 : Make a picture

Histogram - basically a bar chart where the range bins are the grouping variable. Once again,

AREA = RELATIVE FREQUENCY

FES 510
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

MINITAB : use Graph \rightarrow Histogram. Enter the variable with the raw data : you can let MINITAB choose the bins.

SPSS notes : use Graphs \rightarrow Legacy Dialogs \rightarrow
Histogram or Graphs \rightarrow Chart Builder.
Note : the shape of a histogram is highly dependent on the number of bins - in general, let the computer choose!

Words that describe quantitative distributions

Symmetric : one half is a mirror image of the other half Asymmetric : not symmetric (AAAHH!)
Unimodal : one mode
Bi-modal : two modes
(you get the idea)

Symmetric, unimodal

FES 510

A Mode of a distribution is

- A local maximum (math definition)
- A peak
- The most common value (and the second most common value, etc)

Skewness :

Skewed to the right

Skewed to the left

Numerical Descriptions Of Sample Distributions

The CENTER and the SPREAD

- the CENTER

Two primary measures :

- Sample Mean = average
- Sample Median $=$ Middle value $=50$ th percentile

MEAN

"Physical" interpretation of Mean :

Mean is the Center of mass - balance point of a distribution

$$
\bar{x}=1287
$$

Example (Journal of Forensic and Legal Medicine, 2010) : Brain weights of six men in Tehran (grams) :

Sample Mean $=\frac{1290+1306+1285+1279+1243+1317}{6}=1287 \mathrm{~g}$

For a variable X with n observed values $X_{1}, x_{2}, \ldots, x_{n}$, the sample mean of X (called ' x-bar') is

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Ex : brain weights of people, Number of observations is $n=6$

MEDIAN

Sample Median

= Middle observation

= 50th percentile
$=$ the value such that 50% of the data is less than that value

Calculating Sample Median M -
first, sort data from low to high. Then
For ODD number of observations, sample median is middle observation

$$
\text { Ex: } 5 \text { test scores : Data : } \quad 72,57,88,76,93
$$

Sorted: $\quad 57,72,76,88,93$
Median : 76

For EVEN number of observations, sample median is average of middle observations

Example: Height of six students in class in cm

$$
\begin{array}{lc}
\text { Data : } & 178,163,168,167,170,150 \\
\text { Sorted : } & 150,163,167,168,170,178 \\
\text { Median : } & 167.5
\end{array}
$$

Note : some programs/books will include the median when calculating quartiles:

$$
\begin{gathered}
\begin{array}{c}
150,163,167,(167.5) \\
M=167.5 \\
M=170,178 \\
Q_{1}=165 \quad Q_{3}=169
\end{array}
\end{gathered}
$$

Both answers are fine!

QUARTILES
 First quartile Q_{1} is

- the sample median of the observations below the median
- the 25th percentile
- the value such that 25% of the data is below this value

Third quartile Q_{3} is

- the sample median of the observations above the median
- the 75th percentile
- the value such that 75% of the data is below this value
(So the second quartile would be the ????)
Ex: people heights

$$
\begin{array}{c}150,163,167, \mid 168,170,178 \\ M=167.5\end{array}
$$

$Q_{1}=163 \quad Q_{3}=170$

PERCENTILE : the value below which a particular percentage of the observed data fall. (there are several ways to calculate this number, so don't be surprised if your calculator/computer gives a different answer)

Find k th percentile	Ex :Find percentile in Height Data
1) Sort data	$150,163,167,168,170,178$
2) Multiply sample size n by the	
percentile. Call this T.	Get $37^{\text {th }}$ percentile : $T=6^{*} 0.37=2.22$
Get $50^{\text {th }}$ percentile : $T=6^{*} 0.5=3$	
3) If T is NOT an integer, round up. The corresponding observation in the data is the k th percentile.	$37^{\text {th }}$ percentile : round up 2.2 to 3 , third data point is 167 cm , the $37^{\text {th }}$ percentile. 4) If T IS an integer, percentile is the average of the T th and $(T+1)$ st observations
50th percentile : average of third and fourth data points is 167.5 cm	

OUTLIER : An unusually large or small observation
Example : One year, on the first day of one class, I asked students to give the probability they would actually take the class. Here are some of the values.

$$
1.0,0.9,0.99,1.0,0.3,0.95,1.0,0.5,7.0,1.0
$$

ROBUST or RESISTANT

A statistic is robust (or resistant) if it is not sensitive to outliers.

FACT - The MEDIAN is more robust than the MEAN

FES510a

Mean, Median, and Skewness

(and the dotplot - like a histogram)
In a Left Skewed distribution, MEAN < MEDIAN
Example : Poverty Data. Life Expectancy for 198 Countries. Mean=69, Median=72

In a Right Skewed distribution, MEAN > MEDIAN
Example : Poverty Data. GNI per capita for 198 Countries around the world. Mean=10637, Median=3715

MINITAB Dotplot: Use Graph \rightarrow Dotplot. Choose Simple.
Enter variable with data.
spes
SPSS: use Graphs \rightarrow Legacy Dialogs \rightarrow
Scatter/Dot and then choose Simple Dot. Enter variable with data.

Boxplot - a graph based on the five number summary that helps detect outliers

Example : Fertility Rates in 232 Countries

Making a Boxplot

Boxplot of Fertility Rates

- Central box spans Quartiles
- Middle line marks median
- Observations more than 1.5^{*} IQR above Q_{3} or below Q_{1} are possible outliers
- Explicitly : Potential Outliers are
- Observations greater than $\mathrm{Q}_{3}+1.5^{*}$ IQR
- Observations smaller than $Q_{1}-1.5^{*}$ IQR
- Marked by an Asterisk *
- 'Whiskers' extend to largest and smallest observations that are not suspected outliers
- Doesn't matter if the graph is vertical or horizontal - it's a one dimensional graph! (and width of the box means nothing . . .)

- Why 1.5? Because John Tukey who invented the boxplot in 1977 choose this as a reasonable cutoff for outliers, and it's still used today. More on this later . . .

Example : Probability of taking my class - boxplot of all responses, then with 7.0 changed to 0.7

Boxplots are very useful for comparing the distribution of two or more groups

Example : Height of students in a class by gender

Example : Roundup ${ }^{\text {TM. }}$. Two FES students examined the claim that Roundup degrades into harmless substances after a specified period. They examined 5 levels of Roundup - full strength, down to plain water. The dry weight of 3 different radish plants was measured at each Roundup level.

Boxplot of Results : where are the whiskers???

FES510a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

VARIANCE and STANDARD DEVIATION (SD)

- Most common and useful measure of SPREAD of a distribution. Measures spread around the MEAN
- Relationship: Standard Deviation $=\sqrt{\text { Variance }}$
- Notation

Sample Variance $=\mathrm{s}^{2}$,
Standard Deviation $=\mathrm{s}$

The Sample Variance s ${ }^{2}$ is
 a Statistic.
 This is a number we can calculate

- Idea of variance
- How far away are the observations, on average, from the mean?
- This calculation involves the DEVIATIONS

MINITAB Boxplot : To make a boxplot, use Graph \rightarrow Boxplot. Enter variables. Double-click on graph to change colors, etc. SPSS: use Graphs \rightarrow Legacy Dialogs \rightarrow Boxplot and then choose Simple. Enter variable.

Example (let's work it out!) : Here are values for \% urban population for 12 countries (based on year 2000 estimates) Make a boxplot : what is IQR? Any outliers?

Rwanda	6	Brazil	81	Australia	91
Chad	24	Denmark	85	Kuwait	96
Greece	60	Chile	86	Belgium	97
France	75	Lebanon	90	Singapore	100

- Formula for Sample Variance : in words, the average of the squared deviations

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

$$
\begin{aligned}
& \text { Sum }= \\
& \sum_{i=1}^{6}\left(x_{i}-\bar{x}\right)^{2}=
\end{aligned}
$$

X_{i} (Data)	\bar{X} (Mean)	$X_{i}-\bar{X}$ (Deviations)	$\left(x_{i}-\bar{x}\right)^{2}$ (Squared (Seviations)	$n-1=5$ Sample Variance :
178	166	12	144	$s^{2}=\frac{430}{5}=86$
163	166	-3	9	5
168	166	2	4	
167	166	1	1	Sample Standard
170	166	4	16	Deviation :
150	166	-16	256	$s=\sqrt{86}=9.3$

Why divide by $n-1$?

- If $n=1$, you shouldn't be calculating a variance!
- If n is big, it doesn't matter anyway
- Real Reason - it makes the estimate unbiased (more on this later) - for large sample sizes, the sample statistic will approach the correct true value!

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

Why squared Deviations?

- Sum of deviations is just 0. Squaring the deviations converts the negative deviations to positive numbers
- Could use average absolute value of the deviations - called 'mean absolute deviation'
- Summing squares is a natural operation - (think Pythagoras)
- Real Reason - Squared Deviations are best way to capture spread in a normal distribution (Fisher, 1920) AND they are a more accurate measure of dispersion. See nice discussion here: http://www.separatinghyperplanes.com/2014/04/why-do-statisticians-use-standard.html and also here : http://www.leeds.ac.uk/educol/documents/00003759.htm

Example : In class...

More on VARIANCE and STANDARD DEVIATION (SD)

- SD of $3,3,3,3,3,3$ is zero (no variation)
- Robustness (recall that a statistic that is not sensitive to outliers is robust)

IQR is robust; $S D$ is not

Example : probabilities of taking my class :

$$
\begin{array}{r}
1.0,0.9,0.99,1.0,0.3,0.95,1.0,0.5,7.0,1.0 \\
S D=2.0, \quad I Q R=0.2
\end{array}
$$

Change 7.0 to $0.7 \longrightarrow S D=0.25, I Q R=0.35$
IQR changes little, SD changes quite a bit

MINITAB Summary Stats : To get all of the summary statistics discussed
so far (mean, median, IQR, SD), use Stat \rightarrow Basic Statistics \rightarrow Display Descriptive Statistics.

SPSS: use Analyze \rightarrow Descriptive Statistics \rightarrow
Descriptives

Results for 6 heights :

Variable	N	Mean	SE Mean	StDev	Minimum	Q1	Median	Q3
Height	6	166.00	3.79	9.27	150.00	159.75	167.50	172.00
Variable	Maximum							
Height	178.00							

Rules for LINEAR TRANSFORMATIONS of Means and Variances

(this looks boring, but will be useful later - hint hint!!!)
Example : Height conversion. Suppose I measured student height in cm and then calculated a mean and standard deviation. I actually want the mean and
 standard deviation of height in inches while wearing shoes with $1 / 2$ inch soles. Could convert each data point and recalculate mean/std dev. OR . . . use brain!
A conversion formula from centimeters (X) to inches (y).

$$
y_{i}=\frac{1}{2.54} x_{i}+0.5
$$

This is called a linear transformation.

FES510a

Suppose we have some data with sample mean \bar{X} and sample variance S_{x}^{2}. Make a linear transformation (multiply by a, add b) to create $y_{i}=a x_{i}+b$.

Rules for Linear Transformations :

- $\bar{y}=a \bar{x}+b$
(mean of y is a times mean of X times plus b)
- $s_{y}^{2}=a^{2} s_{x}^{2}$ (no change due to b) i.e. $s_{y}=|a| s_{x}$
(variance of y is the variance of X times a squared)
(SD of y is the $S D$ of X times the absolute value of a)

Example : Mean height in inches with shoes :

$$
\bar{y}=\frac{1}{2.54} 166+0.5=65.9 \text { inches }
$$

Variance and SD of height in inches with shoes:

$$
\begin{gathered}
s_{y}^{2}=\left(\frac{1}{2.54}\right)^{2} * 86=13.3\left(\text { (inches }^{2}\right. \text {) } \\
s_{y}=\frac{1}{2.54} * 9.3=\sqrt{13.3}=3.65 \text { inches }
\end{gathered}
$$

Increase height
2-5 INCHES $_{\text {instanty! }}$

$\left.\right|_{\text {Taller }} ^{2,2^{*}-5}$

FES510a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

65

Sample data we collect is observable (it's sensible)

- We calculate various properties of our sample data (Statistics)
- Sample Mean
- Sample Variance

$$
\begin{gathered}
\text { Sample } \rightarrow \text { Statistic } \\
\text { Population } \rightarrow \text { Parameter }
\end{gathered}
$$

- Histogram - the observed frequency of data in various ranges
- However, our sample data is just an observable reflection of the true, unknown, ideal Population (intelligible).
- The population has various unknown, true, fixed properties (Parameters):
- True Mean height of people
- True Variance in the height of people
- True Histogram - true relative frequency of observations over various ranges (i.e. 22% of men are between $5^{\prime} 6^{\prime \prime}$ and $6^{\prime} 0^{\prime \prime}$).
This 'True Histogram' is called a Probability Density Curve or Probability Density Function.
FES510a

PLATO : (427-347 BCE). Plato divided existence into two realms (the 'Doctrine of Forms') : The intelligible realm of perfect, eternal, invisible ideas and forms and the sensible realm of concrete, familiar objects. For Plato, a tree known through the senses was a shadowy copy of an invisible, unchangeable idea of a perfect tree.

Notation :

- Things we can observe and calculate are generally notated in Latin Script
- Things we cannot know (true parameters) are usually notated in Greek

Remember this :

Only the Gods know true properties of populations (parameters), and the Gods speak GREEK!

What this has to do with statistics . . .

What we see (mortals)
Sample
Statistic
Sample mean \bar{X}
Sample Standard Deviation S
.... and....
Sample Histogram

Invisible Truth (gods)

> Population
> Parameter

True Mean μ
True Standard Deviation σ
True Density Curve

Density Curve is

- Idealized, smoothed histogram. Limit of large population (sample size $\rightarrow \infty$ (infinity))
- A positive valued curve
- A mathematical curve with area EXACTLY=1 underneath it

(Aside: for those who admitted knowing calculus, this means that the integral of the function over the entire real line is equal to one!)

Density curves

- Learned how to describe the center and spread of sample data
- Often, a large number of observations follows a regular pattern that can be described by a smooth curve. We can describe the data with a mathematical model called a density curve

Exponential Density with mean 5 (used in failure times - like the life of light bulbs)

FES510a

Example : Dissolved Oxygen in CT

 waters(Robin Kriesberg). Water samples were collected at 12 CT shoreline locations at different times during the day on the surface and 10 meters below the surface. Weather measurements and water chemistry measurements were taken.

We look at 66 observations of surface of waters in Bridgeport harbor in summer of 2000 and examine the dissolved oxygen levels (DO in mg/liter)

Sample Mean : $\bar{X}=6.6 \mathrm{mg} / \mathrm{l}$
i.e. the average surface water in Bridgeport had a DO of $6.6 \mathrm{mg} / \mathrm{l}$

Sample standard deviation : $S=1.4 \mathrm{mg} / \mathrm{l}$
i.e. a typical DO measurement s is $1.4 \mathrm{mg} /$ away from 6.6

Histogram of
Sample Data :

What is the shape of the underlying density? Maybe . . .

NORMAL DENSITY CURVE

Most important Density Curve

Standard Normal Density

Mean $=\mu=0$
standard deviation $=\sigma=1$
Equation is

$$
y=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}
$$

In general, the equation is

$$
y=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

(don't need to memorize these)

General Normal Densities

 Underlying Shape is Always the Same!

Remember This!

σ larger

σ smaller

Note that the distance σ away from the mean μ indicates the inflection point of the curve - the place where it goes from concave down to concave up.

Notation : A normal density with mean μ and standard deviation σ is written as $N(\mu, \sigma)$

" $68,95,99.7$ rule"

- 68% of the population is within 1 SD of the mean (i.e. between $\mu-\sigma$ and $\mu+\sigma)$
- 95% of the population is within 2 SD's of the mean (i.e. between $\mu-2 \sigma$ and $\mu+2 \sigma$)
- 99.7% of the population is within 3 SD's of the mean

Example : Dissolved Oxygen

DO content in Bridgeport harbor has an approximately normal distribution with mean 6.6 mg/l and standard deviation 1.4 mg/l. (i.e., data is $N(6.6,1.4)$).

Let's pretend that the TRUE VALUES - the parameters (think gods) are $\mu=6.6, \sigma=1.4$

What percentile is a DO level of 8 ?

- That is, what percent of the probability density function is below 8?
- That is, is we took SAMPLE data, about what percent of the data should have a value of 8 or less?

Draw a picture :

FES510a
8.0 is 1 standard deviation above the mean. Want the shaded area.

Think about the same area in a standard normal distribution

FES510a

Remember : all normal distributions are equivalent - the shape stays the same, only the units change!

Use Picture :
$16 \%+68 \%=84 \%$
Answer : 8.0 is the 84th percentile.
That is, about 84% of DO levels observed in Bridgeport Harbor will have a value of 8.0 or less

Distributions \rightarrow Normal. Fill in 6.6 for mean and 1.4 for SD. Do a cumulative probability for an input constant of 8.0

SPSS: use Transform \rightarrow Compute Variable. In Target Variable, enter some variable name (like normquant) and then in Numeric Expression enter CDF.NORMAL (8, 6.6,1.4)

```
Cumulative Distribution Function
Normal with mean = 6.60 and standard deviation = 1.40
            x P( X <= x)
```

 \(8.0000 \quad 0.8413\)
 Example : (DO levels). What percentage of DO levels observed in Bridgeport harbor will have a value of $5.0 \mathrm{mg} / \mathrm{l}$ or less?

Not so simple now (5.0 is not a 'nice' number of standard deviations away from the mean - i.e. not an easy use
 of the '68, 95, 99.7' rule)

1) Use MINITAB / SPSS - same procedure as above, just change 8.0 to 5.0

x	$\mathrm{P}(\mathrm{X}<=\mathrm{x})$
5.0000	0.1265

\leqslant about 13\%
This is what you should do. However, in the old days

FES510a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer
2) Use Normal Score (also called the z-score, or the Standardized value). How many standard deviations below $6.6 \mathrm{mg} / \mathrm{l}$ is 5.0 ?

$$
\frac{5.0-6.6}{1.4}=-1.14
$$

In General : If x has a normal distribution with mean μ and standard deviation σ, then the normal score is

$$
z=\frac{x-\mu}{\sigma}
$$

Furthermore, $\mathrm{z} \sim N(0,1)$ (standard normal distribution)
Look up the z-score in a Table of Standard Normal Probabilities (Appendix of any stat book)

So, why are we doang whis!?!

In a few weeks, we'll find that in most situations, our search for the true mean depends on understanding normal distrituions and z -scores.

Aside: Remember the 1.5*IQR rule for boxplots? For a Standard Normal Distribution:

- Q1 $=-0.67$
- Q3 $=0.67$
- $1.5 \star$ IQR $=2$
- $\mathrm{Q} 1-1.5 \star \mathrm{IQR}=-2.7$
- Q3+1.5*IQR $=2.7$

That is, we're calling anything 2.7 standard deviations away from the mean an outlier! This is equivalent to keeping the middle 99.3% of the distribution - sort of like the three standard deviation rule!

ES510a

Assessing Normality - Normal Quantile Plots

(Normal Probability Plots)
Our Story -

- Have some data on a variable
- Does this data come from a normal distribution?
- If not, how is it different from a normal distribution?

The idea -

- Hard to look at a histogram or a dotplot and guess if it has the right shape
- Instead, make a plot where we judge how well points fall along a straight line

Example : DO in Bridgeport harbor, summer 2000.

Is this normal?

Normal Quantile Plot

Do the observations seem to fall on a straight line?

How to construct quantile plots

- Plot the observed data vs. "where we would expect them to be if they came from a (standard) Normal distribution." (since every normal distribution has the same shape, it doesn't matter which one we use)
- Quantile plots use percentiles of the Normal distribution.
- Roughly, plot ith largest observation vs. $(i / n)^{\text {th }}$ percentile of a $N(0,1)$ distribution
(there are actually several ways of doing this (MINITAB and SPSS have different options), but l'll describe one way below . . .)

FES510a
Intro Environmental Stats : Fall 2016 -J Reuning-Scherer

Example : Damage from hurricanes from 1991-2004 (billions of \$2004) ordered from smallest to largest: $\{3,4,4,5,6,7,9,14,15,44\}$

- Divide a Standard normal distribution into 11 equal
 areas (i.e. one more than the number of data points).
- Write down the values in a Standard normal distribution that correspond to this division (i.e. the dots in the picture below : these are the QUANTILES!!!)

Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

- Plot the values in the standard normal distribution vs. the data

$\{3,4,4,5,6,7,9,14,15,44\}$

FES510a

Example : Data generated from a $N(5,10)$ distribution with different sample sizes

MINITAB Normal Quantile Plot: Use Graph \rightarrow Probability Plot and choose Simple. Put variables on interest in the Graph Variables dialogue box.

SPSS: use Analyze \rightarrow Descriptive Statistics \rightarrow Q-Q Plots. Enter variable(s). Make sure the the Test Distribution is Normal!

Note - The larger the dataset sample

 size, the straighter the line will be if the data is really normal

Example : World Poverty 2013. Does data on percent population in urban areas have an approximately normal distribution? (this is called a truncated distribution)

Data Relationships

Up Next: describing relationship between two quantitative variables:

- Scatterplots
- Association and Correlation
- Regression

Visualizing Relationships: Scatterplots

- Plot two variables simultaneously
- Put one variable on horizontal axis, other variable on vertical axis
- Plot data pairs - for each observation, plot the value of one variable vs. the value of the other variable

Example : Height and Diameter of 31 Black Cherry Trees in Alleghany Forest. Here is a sample of the data and a Scatterplot :

Diameter	Height	Volume
8.3	70	10.3
8.6	65	10.3
8.8	63	10.2
10.5	72	16.4
10.7	81	18.8
10.8	83	19.7

Scatterplot Notation :

- The Horizontal axis is ALWAYS called the \mathbf{X} axis.
- The Vertical axis is ALWAYS called the \mathbf{Y} axis.

Scatterplot in MINITAB : Stat \rightarrow Graph \rightarrow Scatterplot. Choose simple. Enter the variables of interest (can be more than two)

SPSS: use Graph \rightarrow Legacy Dialoges \rightarrow Scatter/Dot. Choose simple. Enter variables (can be more than two)

Association between Variables

- Some values of the first variable seem associated with particular values of the second variable.
- Does not imply linear!

Example : World Poverty Data : Factors associated with Fertility Rate (2008 data)

Positive Association

Note : Association talks about difection of relationship, not the mature of the relationshif

Negative Association

FES510a

Sample Correlation

- Measures the strength of the linear relationship between two variables.
- Denoted by r
- Value is between -1 and +1

- Zero indicates no correlation (random scatter)
- +1 indicates all points are on a line with positive slope
- -1 indicates all points are on a line with negative slope

Definition of correlation

- First standardize variables: use Z-scores!

$$
z_{x_{i}}=\frac{x_{i}-\bar{x}}{s_{x}} \quad \text { and } \quad z_{y_{i}}=\frac{y_{i}-\bar{y}}{s_{y}}
$$

i.e. How many SD's is each observation above or below the mean for each variable?

This is just a change of units - same picture!

Original and z-scores for the cherry tree data

- Second, multiply and average :

$$
r=\frac{1}{(n-1)} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}}
$$

Algebra shows this is the same thing:

$$
r=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum\left(y_{i}-\bar{y}\right)^{2}}}
$$

Algebra also shows this is a dimensionless number between -1 and +1 (try this if you like!)

Idea of Correlation

Formula $\quad r=\frac{1}{(n-1)} \sum_{i=1}^{n} z_{x_{i}} z_{y_{i}}=\frac{1}{(n-1)} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)$

$$
\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) \quad \quad \quad r=\frac{1}{(n-1)} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)
$$

FESS10a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

Sample Correlation in MINITAB : Stat \rightarrow Basic
Statistics \rightarrow Correlation. Enter the variables of interest (can be more than two)

SPSS: use Analyze \rightarrow Correlate \rightarrow Bivariate. Enter variables (can be more than two)

$$
\text { What is the value of }\left(\frac{x_{i}-\bar{x}}{s_{x}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) ?
$$

Correlation is often confused with Association. This happens frequently in the media, and not so infrequently in journals and scientific papers!

Correlation should only be used when

- Quantifying the relationship between two QUANTITATIVE variables.
- The relationship between these variables is LINEAR
- There is no evidence of LARGE OUTLIERS!

Most problems can be avoided by always making a scatterplot before calculating correlation!

FES510a

The questions were

- Violent criminals who commit three crimes should always receive a mandatory life sentence without parole.
- Underage violent offenders should be rehabilitated rather than incarcerated.

The sample correlation is $r=-0.73$

However - here is a scatterplot of the data: these variables are really categorical not quantitative. Correlation is NOT appropriate!

Example : correlation is -0.72 , but correlation is clearly not appropriate!! This is negative ASSOCIATION, not negative CORRELATION.
ntro Environmental Stats : Fall 2016 - J Reuning-Scherer

Example : Relationship between Body Weight and Brain Weight (extracted from "Sleep in Mammals: Ecological and Constitutional Correlates" by Allison, T. and Cicchetti, D. (1976)). This data records the average body and brain weight of 62 species of mammals. Correlation is $r=0.93$ - seems great! However, here is the scatterplot :

In this case, the elephants are Large Outliers - they are driving the large correlation. Remove elephants - correlation is only 0.651 (and then human looks like an outlier . . .)

It seems we should be able to do something about this ...

Transformations

- Sometimes, it is necessary to transform one or more variables before calculating correlations.
- The hope is that while the original variables do not have a linear relationship, the transformed variables WILL have a linear relationship.

Common transformations include

- Logarithms (natural)
- Exponential
- Square root

FES510a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

113

Transformations in MINITAB
Calc \rightarrow Calculator.
Make a new variable name (e.g 'Log Brain') and write the formula for the new variable in the Expression box.

Transformations in SPSS
Transform \rightarrow Compute
Variable. Make anew variable name (e.g 'LogBrain') and write the formula for the new variable in the Numeric Expression box.

Knowing what transformation to use is a matter of experience (that is, experience looking at data relationships and knowing what transformations work), and knowledge of systems (i.e. knowledge of a natural system).

Example : Relationship between Body Weight and Brain Weight. The elephant is an outlier in both body weight and brain weight. Experience (mine) suggests trying to take the natural logs of both variables.

A plot of the relationship between the transformed variables :

This relationship is linear AND there are now no outliers. Correlation is 0.96 , very strong!

Sometimes, not even a picture will help you - sometimes you just have to think!

Example : Diameter and Volume of 31 Black Cherry Trees in Alleghany Forest. Look at Scatterplot - seems mostly linear, correlation is r $=0.967$ - quite high.

Use brain - pretend a tree is a box. Let d be the length of a side. Volume of Tree is $V=d^{3}$. So diameter is proportional to the cube-root of volume $(d=\sqrt[3]{V})$.
That is, there is a linear relationship between the diameter and the cube-root of the volume.

SO : Make a cube-root

 transformation of volume, then compute the correlation.Picture is slightly more linear, and correlation improves :
Correlation is now $r=0.98$. .

Let's think about the transformed brain/body weight data. Suppose we have a new mammal. We can easily measure its weight, but measuring brain weight is somewhat more difficult. It seems like we might come up with a model based on known data to relate body and brain weight. This would allow us to estimate the brain weight of the new animal without performing crude brain surgery. This idea is called . . .

Some Regression History

Example : Sir Francis Galton : cousin of Darwin, invented eugenics, the weather map, correlation, the idea of surveys about human communities, AND methods for classifying fingerprints!

Galton collected data which measured the heights of fathers and sons. How do fathers' heights predict sons' heights?

Specifically, if a father is 72" tall, what's our guess of the son's height?

FES510a

The equation for all the best guesses :

Standardized y value
Standardized X value
(\hat{y}, read ' y hat', symbolizes our guess of y for a given x)

In general :

$$
\frac{\hat{y}-\bar{y}}{s_{y}}=r\left(\frac{x-\bar{x}}{s_{x}}\right)
$$

Rearranging, we get

FES510a

The equation of the

 Least Squares Linear Regression Line$$
\hat{y}=b_{0}+b_{1} x
$$

with slope $b_{1}=r \frac{s_{y}}{S_{x}}$ and intercept $b_{0}=\bar{y}-b_{1} \bar{x}$

Let's Review : Least Squares Linear Regression

- There frequently exists a linear relationship between two variables
- If this linear relationship exists, use the value of one variable to predict the value of another
- Use regression to find the 'best' line that describes this relationship
'Guess that son will be,
not 4/3 SD's above mean, but
correlation * $4 / 3=2 / 3$ SD's above mean, that is 71 ".

What's 'best'?

For each data point we observe, look at the vertical difference between the observed Y value (y_{i}) and the corresponding point on the regression line (\hat{y}_{i} - the fitted value). This difference is called the residual or error: $e_{i}=y_{i}-\hat{y}_{i}$
So what's 'Best'?

The regression line minimizes

 the sum of the squared residuals :$$
\sum_{i=1}^{n} e_{i}^{2}=\overline{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}
$$

Bad Fit
Better Fit

Example : Brain/Body weight relationship. Let's use regression to find a 'best' line that predicts log brain weight based on log body weight.

Regression in MINITAB - use Stat \rightarrow Regression \rightarrow Fitted Line Plot. Later, we'll use Stat \rightarrow Regression \rightarrow Regression. This gives lots of information we haven't discussed yet.

SPSS: for now, use Analyze \rightarrow Regression \rightarrow Curve Estimation. Enter variables and make sure that under models you've checked Linear. Later, you'll use Analyze \rightarrow Regression \rightarrow Linear.

MINITAB produces a plot that is a scatterplot of the data, the 'best' fitted line, and the estimated regression equation (slope and intercept) calculated by minimizing the sum of the squared residuals.

Relationship of Regression to Correlation :

Notice that $\quad \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}<\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}$
Sum of Squared Residuals < Sum of Squared Deviations

Correlation measures the improvement of a sloped line to a flatline. In other words (take home message - forget formulas)

r^{2} measures the proportion of the variance of the y 's explained by the regression

In fact, algebra shows tha

$$
\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

In Words: Variance of y's around fitted values + Variance of fitted values (around mean) = Variance of y's.

NOW : plugging in the definition of correlation, more algebra shows

$$
\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-y\right)^{2}}=1-r^{2}
$$

How far is fitted line from mean line
which is equivalent to

$$
\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}=r^{2}
$$

How far are y data

$$
\longmapsto \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

values from mean

FES510a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

Example : Consider 4 points $(x, y):(0,0)(1,2)(2,4)(3,6)$. $\bar{y}=3$. Correlation is 1, i.e. $r^{2}=1$

Now:

- $\operatorname{Variance}(Y)=6.6($ based
 on DEVIATIONS
- Regression residuals are all 0, i.e. Variance (residuals) $=0$
- SO : Regression explains all of variation in the Y's

Example : Consider 4 points $(x, y):(0,0)(0,4)(1,2)(1,6)$ (same y^{\prime} s!!!!). $\quad \bar{y}=3$.
Correlation is 0.45 , i.e. $r^{2}=$ 0.2

Now:

- $\operatorname{Variance}(Y)=6.6$
- Variance $($ residuals $)=5.3$

SO : Amount of variation of y's explained by $\quad \frac{6.6-5.3}{6.6}=.2$
regression is

Regression - when things go bad

(Not bad really, but things that can be problematic . . .)

- Least-squares regression is not robust (resistant) to 'unusual' points.

- Two kinds of interesting points:
- Outlier : a point with a large residual. Note this is NOT the same thing as being an outlier from the data (for example, a point might be an outlier in the X and/or Y direction, but might not have a large residual!)
- Influential point : if removed, causes a large change in the regression line. These points often (but not always) have large X values.

A point can be influential, an outlier, or BOTH!

Example : The point $(10,10)$ is . . .? (what happens without this point?)

Example : Poverty Data (year 2000 data). Try predicting population growth rate (percent growth) with per capita calories per day. Two 'unusual points'. These are (outliers, influential?). Notice that the regression line does not move much when they are removed.

Evaluating Regression models : Residual Plots

Here is our simple linear regression model : this describes the predicted value of y , denoted by y 'hat'.

$$
\hat{y}=b_{0}+b_{1} x
$$

The more complete model is that \mathbf{y} is a linear function of \mathbf{x}, with added errors (denoted by ε_{i})

$$
y=b_{0}+b_{1} x+\varepsilon_{i}
$$

For reasons we'll discuss later, we assume the errors come from a normal distribution with mean zero and some standard deviation sigma - in 'stat' notation :

$$
\varepsilon_{i} \sim N(0, \sigma)
$$

FES510a

- The relationship between explanatory (X) and response variables (Y) variables is linear.
- The explanatory variable 'explains' all of the predictable variation in the $Y^{\prime} \mathrm{s}$
- The residuals have no discernible pattern - they should be random noise due a variety of sources.
- In fact, it is assumed that the residuals have a Random Normal Distribution.
SO : what does this mean?

Simple Linear Least-Squares regression assumes that

To test these assumptions, we look at residual plots

- To see if residuals have a normal distribution, make a Normal Quantile (or Probability) plot of the residuals.
- To see if there are discernible patterns in the residuals, make a plot of the fitted values (\hat{y} : on the horizontal axis) vs. the residuals (vertical axis). There should be no discernable patterns in this plot!

Essentially, this plot removes the linear trend from your data and displays any trends that remain!

Residual Plots in MINITAB: use Stat \rightarrow Regression \rightarrow Fitted Line Plot. Click on the Graphs button, choose Normal Plot of Residuals and Residuals versus Fits.

SPSS: use Analyze \rightarrow Regression \rightarrow Linear. Enter dependent and independent variables. Click on Plots. Choose Normal probability plot, and then under Y enter ZRESID and for X put DEPENDNT.

Example : Brain/Body weight relationship in mammals. We used regression to predict log(brain wt) based on $\log (b o d y s t)$.

Here are plots of residuals :

A normal quantile plot of the residuals is approximately linear this is good!

A plot of residuals vs. fitted values shows no discernible pattern, and there are no obvious outliers. This is good!

So : what to do - try a Transformation - take logs of GNIPC. Fit model again.

FES510a

How Big should R^{2} be?

- R^{2} measures the amount of variability in the response variable explained by the regression model.
- Must be between 0 and 1 (since it's just the correlation squared).

There is no threshold value for what constitutes good vs bad

 R^{2} - a 'good' fit depends on the situation. When modeling chemistry relationships, might expect an R^{2} of 0.99 . When modeling social relationships, might be happy with an R^{2} of 0.12.
Lurking Variables in Regression (things hidden . .)

A variable that has an important effect but was overlooked.
DANGER - Confounding! This is when we think effect is due to one variable, but it is really due to another, lurking variable.
Example : A 1970 study showed coffee drinkers had a higher incidence of bladder cancer. However, a 1993 study showed that, if you also considered smoking, there was no evidence of a link between coffee and bladder cancer. (i.e. people who drink lots of coffee also smoke!).
Example : There is strong association between GNP/capita and Fertility Rates. This does not mean that getting paid less CAUSES women to have more babies!

Lurking variables can actually cause a reversal in the apparent magnitude of an effect

FES510a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

Example : Examine how many times people can click a counter at two different temperatures. At what temperature do people get more counts?

Boxplot of Results : 50 deg seems to have higher counts than 80 degrees.

However : look at plot of counts by
temperature group with age of subject included (age is the covariate)

50 deg actually has lower counts 80 deg. BUT Age has a strong impact on Response Time, and the average
 age is quite different in each treatment group (\bar{x}_{1}. $=32$, $\bar{X}_{2 .}=57$), so age effect becomes confounded with

temperature effect.

Example : Speed of Ants. (see
. (see
http://pubs.acs.ora/doilpdff10.1021/edo77p183) Ants are cold-blooded and their speed is temperature dependent. Experiments have shown that in fact ant speed can be modeled according to known facts about the rate of chemical reactions :

$$
\ln (\text { Speed })=b_{0}+b_{1}\left(\frac{1}{\text { Temp }}\right)
$$

That is, the natural log of ant speed is linearly related to the inverse of the Temperature.
One Last Regression Warning : Regression estimates are valid ONLY over the region of explanatory variables where you have data!

Here is a plot of some experimental data. Now - think about what happens as temperature increases or decreases - is the linear estimate still valid?

- Design Carefully : Consider
- Feasibility of obtaining measurements
- Cost and time associated with obtaining measurements
- The number of measurements needed to obtain 'good' results (sample size calculation if possible)
- Possible sources of variability, bias, error
- Run a pilot study : Mini- study to test your procedures and identify problems
- How long will data collection take?
- Will your measurement procedure work?

- Will people answer your survey?
- Will people lie?
- Will your plants die?
- If in doubt, consult with a Statistician : you can save immense heartache, loss of resources, etc. by checking with an expert first!

Ronald Fisher (1890-1962)
To call in the statistician after the experiment is done may be no more than asking him to perform a postmortem examination: he may be able to say what the experiment died of. (Indian Statistical Conference, 1938).

In 1926, Fisher Published 'Arrangement of Field Experiments" which outlined three components for successful studies:

Local Control, Replication, Randomization

Example : Scurvy

- Disease caused by vitamin C deficiency
- Causes the bodies connective tissues to degenerate (teeth fall out, wounds open).
- Killed an estimated 2 million sailors between 1500 and 1800 - number one cause of death among sailors in this period

One of the first experiments (every) was conducted by Dr. James Lind who in 1753 published 'A Treatise of the Scurvy".

Here's an excerpt - look for local control, replication, randomization :

Their cases were as similar as I could have them. ... They lay together in one place . . and had one diet in common to all. Two of these were ordered each a quart of cyder a
day. Two others took elixir vitriol three times a day. Two others took two spoonfuls of vinegar three times a day upon an empty stomach. Two of the worst patients, with the tendons in the ham rigid (a symptom none the rest had) were put under a course of sea water. Two others had each two oranges and one lemon given them every day. The two remaining patients took the bigness of a nutmeg three times a day of àn electuary recommended by an hospital surgeon.

Examples:

- You want to compare treatments for dealing with woolly adelgid on hemlock trees. You assign the most severe trees to get pruning and spraying while the less severe trees get spraying only. You compare one year survival rates.
- You need to buy a new toaster. You go to epinion.com and see what other consumers liked.

How do we Randomize?

Worst

- Machines (drums of paper, numbers in a hat, lotto balls)
- Computers - most common way to achieve randomization.
- Tables of random digits

Example : Randomization Failure in the 1969
Draft. During the Vietnam War, men over 18 year old were drafted in groups of identical birthdays. The Selective Service needed to assign a random draft order to days of the year. To do this, 366 capsules were put into a shoebox (??) and then dumped into a glass jar. Each capsule contained a piece of paper containing one birthday of the year. The head of the Selective Service pulled out capsules one at a time, assigning each successive capsule the next draft number (i.e. September 14 got drafted first, April 24 was drafted second, etc). Here is a plot of draft order vs. day of year : Does it seem random?

Turned out that the correlation of Day of Year and Draft Number is -0.22, a significantly negative correlation. Process was NOT random (challenged in court, but judge ruled that was 'random enough'.) http://en.wikipedia.org/wiki/Draft lottery_(1969)

Computer Randomization

- Most common way to achieve randomization.
- Really pseudo-randomization (uses an algorithm, so it is necessary a predictable process)
- Adequate for most randomization needs (this is what pharmaceutical companies use, for example)

There are many ways to do this - the method depends on the situation.

Example (in MINITAB) : Suppose you want to :

- Give a survey to 100 people.
- There are 3 versions of the survey (A, B, and C)
- 40 people should receive survey A, and 30 people each should receive surveys B and C.

Solution : in MINITAB

1. Use Calc \rightarrow Make Patterned Data \rightarrow Simple Set of Numbers. Choose numbers from 1 to 100 in steps of 1 , store in a new column.
2. Use Calc \rightarrow Random Data \rightarrow Choose from Columns. Sample from the column above WITHOUT replacement. Save in a new column. This gives a random ordering of the original column.
3. Assign the first 40 people in the new column to receive survey A, the next 30 receive survey B, the final 30 receive survey C.

Tables of random digits

- These are the most accurate method of randomization
- Generated by measuring radioactive decay times or following other natural, random processes
- Available in stat books or online
http://www. nist.gov/pm//wmd/pubs/upload/AppenB-HB133-05-Z.pdi
ample : Previous survey of three types given to 100 people. First, we give people numbers from 0 to 99 rather than 1 to 100.

Random Digit Table	Person
00	1
01	2
\ldots.	\ldots.
99	100

The first row of a random digit table -
19223950340575628713962990719698642

Assign survey type A first : give to persons 19, 22, 39, 50, 34, 5, 75, 62, 87, 13, 96, 29, 90, 71, (ignore 96 - repeat), 98, 64, etc., until 40 people are assigned. Then continue to assign people to survey types B and C.

19223 95034|05756 28713|96299 0771960 98642

What if we only want to assign 30 people, ten to each survey type?

Use the same process, ignore all numbers above 29.

Experiments vs. Observational Studies

Experiments :

- Deliberately vary factors in order to see what happens
- Can often assign causal relationships between responses and treatments (i.e. cause and effect)
- Can be balanced when there are multiple factors to ensure the effects can be separated to establish causation.
- Usually performed under controlled conditions (often in a lab or an experimental plot).
- Randomize individuals (people, plants) to particular treatment groups (which can include doing nothing)
- Are often very expensive or highly immoral to perform

Observational Studies :

- Simply observe people or situations with levels of various factors to draw inferences
- Cannot establish causal relationships between responses and treatments.
- Are performed in situations where we would like to perform an experiment
- Are prone to BIAS.
- Are often the main study type available to researchers.

Example : Smoking and lung cancer

http://www.economist.com/node/10952815

Example : Flu Vaccines. Numerous observational studies have shown a 50% lower risk of dying among vaccinated persons vs. nonvaccinated people. In each case, studies identify self-selecting groups of vaccinated and unvaccinated people.

However, a study from 2006 looked at individuals BEFORE and AFTER they had the flu shot! Note that a Relative Risk of 1 indicates no difference between groups. A Relative Risk of less than one indicates that vaccinated people are less likely to have a particular outcome (death / pneumonia). i.e. a Relative Risk of 0.333 means Vaccinated people are $1 / 3$ as likely to die relatively to unvaccinated people. This study suggests the likelihood of dying/getting pneumonia is greatest BEFORE they ever receive a vaccine - i.e. healthy people are getting the vaccine!

Journal of Epidemiology 2006;35:337-344 Evidence of bias in estimates of influenza vaccine effectiveness in seniors Lisa A Jackson,1,2* Michael L Jackson,1,2 Jennifer C Nelson,1,3 Kathleen M Neuzil4 and Noel S Weiss2

Sampling Designs

(Several courses around campus are offered in Sampling Design (FES) and Survey Design (Political Science)

Why Sample?

- Hope to learn about a population.
- Usually unfeasible to sample EVERY INDIVIDUAL from a population.
- Try to take a sample that reflects the population, and make inferences about the population based on the sample.

Aside - incidentally, a sample of EVERY individual from a population is called a census. A census is often less accurate than a sample since it almost always misses some members of the population (the undercount!)

It is tempting to try to make a sample 'representative'.
However, it is usually best just to take a

Simple Random Sample: Unbiased and Independent
Unbiased: Every sample of size n has equal

chance of being selected.
Independent : selection of one unit has no influence on the selection of other units

A simple random sample requires a
Sampling Frame : a list of every possible unit (person/tree/day) from which a simple random sample can be made.

Example : Measure attitudes about the requirement of taking an intro stats course among undergraduates. The sampling frame would be provided by the . .

FES510a

You may want to insure that certain sub-populations are represented in your sample. In this case, use a

Stratified Sample : First stratify the population into known homogenous sub-groups and then sample within subgroups.

Examples: Candidate preferences : might want to see how political views change according to gender, age, ethnicity. Stratify by these variables first, then sample within each sub-group. Or for forest measurements, stratify by species (say maple, oak, birch), then sample within each species.

Note - to make population level inferences, you need to sample according to the sub-population sizes.

Example : In a class with 60% women, if you stratify by gender and then sample 100 individuals, you need to sample 60 women and 40 men in order to make accurate inferences about the entire class!

If goal is to be COMPARATIVE, choose equal sample sizes in each strata
(i.e. 50 women, 50 men)

If goal is to be REPRESENTATIVE of the entire population, choose strata sample sizes according their prevalence in the entire population

$$
\text { (i.e. } 60 \text { women, } 40 \text { men) }
$$

Simple Random Sample vs. Stratified Sample

- For both a Simple Random Sample and a Stratified Random Sample (if chosen proportionately), EACH individual is equally likely to be chosen.
- However, the requirement for a Simple Random Sample is a bit more stringent - each sample of size n is equally likely to be chosen.

Example : Population with 5 women, 5 men. Choose a sample of size 4, SRS [any 4] vs. Stratified [2 women, 2 men].
$F \quad M$
$F \quad M$
$F M$
$F \quad M$
$F M$

Another problem that often arises in sampling is that individuals are too far apart, or that there is no complete list of individuals. In this case, use

Cluster Sampling :

- Subdivide population into clusters
- Sample from within each cluster OR sample all individuals inside chosen clusters.

Example : New Haven household survey. Instead of driving all over New Haven, divide the city into blocks, choose a sub-sample of blocks, and then sample individuals ONLY within the sub-sample of blocks.

Example : Forest Surveys - divide forest into blocks, choose a few blocks at random, sample trees ONLY inside chosen blocks. Similarly, choose a few random starting locations and then use a TRANSECT at random starting locations.

Example : Class Surveys - choose a few random Yale classes, then survey students ONLY from the chosen classes.

Stratified Sample vs. Clustered Sample

Example

Sometimes, the total population size is unknown, but can be observed at regular intervals. In this case, use a

Systematic Sample : take every th unit that comes along (every $10^{\text {th }}$ person to leave a grocery store, every $100^{\text {th }}$ item in a production line, every $10^{\text {th }}$ day in a year).

Finally, you can mix-and-match sampling techniques to achieve a

Multi-Stage Sample : ANY combination of the sampling techniques mentioned above

- Stratified - Clustered
- Clustered - Stratified
- Stratified - Systematic
- Etc.
- Response Bias : the interviewer treats groups differently.
- Undercoverage : subjects/units are left out of a sample by design

Example : people without phones in phone surveys Example : big fish in deep waters in animal capture/recapture surveys

- Non-response and Volunteer Sampling : people who don't respond may well represent an opinion/state of nature that is otherwise not represented. Similarly, people who volunteer to be selected probably represent a common viewpoint

Example : Ann Landers.

http://www.stats.uwo.ca/faculty/bellhouse/stat353annlanders.pdf In a 1976 survey, Ann Landers asked her (primarily women) readers 'If you had to do it again, would you have children?" Of the 10,000 responses she received, 70\% said 'NO!' Shortly afterward, Good Housekeeping asked their readers the same question. An astonishing 95\% of readers responded 'YES!'.

This is an excellent example of bias caused by

- Volunteer sampling
- Different populations (of readers)
- Different question contexts
- Ann Landers question was preceded by letter from woman detailing many couples who were happier without children
- Good Housekeeping question was preceded by request to readers to essentially repudiate Ann Landers survey results
- Measurement Error - caused by machine, human, data entry, bad luck. Best way to avoid is to do a PILOT STUDY - a practice study to work out the bugs, calculate sample size, and make sure study is feasible!
- Survey Design - a few of the dozens of things that can go wrong :
- People don’t respond
- Survey is to long
- Questions are biased - "Wouldn't you agree that statistics is the most useful course you've ever taken?"
- Questions are unclear / poorly worded

Survey Design - lots to say here, you can take another entire class on this subject . . .
http://lap.umd.edu/survey design/index.html

DESIGN of EXPERIMENTS

Semester long classes are offered in Experimental Design and Analysis in several schools around campus.

A Few Definitions :

- Comparative Experiment : implies that an experiment will compare two or more sets of circumstances to draw inferences
- Treatments (Treatment Factors) : any substance or item or procedure whose effect on the data is to be studied
- Levels : the particular types or amounts or levels taken on by the Treatment Fact ors.
- Experimental Unit : the material to which levels of the treatment factor(s) are applied. THIS IS SOMETIMES HARD TO DETERMINE. We'll discuss in class.
- Experimental error : the variation among identically and independently treated experimental units

Recall the principles of good study design :

Randomization, Local Control, Replication

Randomization

- Make sure that experimental units are assigned randomly to treatment groups.
- Randomization helps prevents bias!
- You give the growth factor to the healthier plants
- You tell the placebo patients "You're on placebo"
- Your assistant knows what outcome you want and makes up the results (Fisher suggested this happened to Mendel, although recent research suggests otherwise) hitp://www.genetics.ord/ci/contentfull/175/3/975
- Bias is often unconscious - see recent study on teachers' gender bias in math grading http://www.nber.org/papers/w20909
- Part of eliminating experimenter bias is to make a study blinded :
- If the subject is unaware of the treatment they receive, a study is called single blinded.
- If both the subject and the experimenter are
 unaware of the treatment being applied, a study is called double blinded.

Systematic Bias

- Field experiments : one treatment is applied to only the upper portion of a field. Soil type changes across the field (also edge effect)
- Time experiments : conditions change from day to day. Also, if subjects receive multiple treatments, there may be an accumulation affect if treatment order is not random

Local Control for Experiments

- Describes methods used to control experimental error, increase accuracy of observations, and allow for inference regarding treatment factors.
- Includes things like
- Placebo groups - are affects due to thought of being treated
- Measurement accuracy - scale calibration, consistency of research assistants, etc.
- Making treatment groups as similar as possible to control for confounding factors
- May require additional design to reduce between subject variability (matching or blocking)

Replication

- Implies measuring the same treatment levels on several independent units to estimate the experimental error variance.
- Ensures results should be reproducible
- Allows us to distinguish real effects from random chance
- Requires sample size calculations!

Example : Deer Contraceptives.

As an alternative to hunting, deer contraceptives are sometimes used to control deer populations. A study examined the effect of Norgestomet at 0 mg (placebo), $14 \mathrm{mg}, 21 \mathrm{mg}, 28 \mathrm{mg}$, or 42 mg . Twenty does were randomly assigned to each treatment group for a total of 100 does. For each doe, it was
 recorded whether or not she had a fawn during the next mating season.
This is a balanced completely randomized design with

- Five treatment groups,
- 20 experimental units per treatment group where a doe was an experimental unit
- 100 observations total

One of the most common methods for achieving local contro (i.e. increasing ability to observe differences between treatment groups) is to use a

Block Design :

- Intention of blocking is to divide experimental units according to factors that are thought to have an effect on the response variable.
- Experimental units known to be similar are divided into blocks. Each block receives ALL treatment groups.
- Analogous to a stratified sample (a block is like a strata)

Example : Round-Up ${ }^{\text {TM }}$. Blocked by Species - anticipated that effect of Round-Up would be species dependent. Three experimental units (one plant in one pot) were assigned to each combination of treatment group and blocking factor.

Round-Up Concentration

Species	$\mathbf{0}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 5}$	$\mathbf{1 . 0}$
Rye Grass	3 pots				
Radish	3 pots				

Crossover Design

Often, variability within subject/unit is greater than the variability between treatments/groups. In this case, the usual experimental design will not detect treatment differences. However, a Crossover Design looks at the treatment difference WITHIN subjects.

Example: (Cartoon Guide) : Compare ethanol vs. regular gas in 10 cabs to test for differences in gas mileage.
First experiment : Completely Randomized Design. Assign 5 cabs to each group.
Boxplots show little difference between gas

treatments. Trouble is, lots of variability between cars (causes ? ?). Treatment variability is small relative to Error (other variability)

Second Experiment : Crossover Design : Randomly assign 5 cars to each treatment group.

- On Day 1, Group 1 gets gas A and Group 2 gets Gas B.
- On Day 2, Group 1 gets gas B and Group 2 gets Gas A.

Look at the difference in gas mileage within each car.

	Group 1	Group 2
Day 1	Gas A	Gas B
Day 2	Gas B	Gas A

(Why do we need both orders Gas A-B, Gas B-A ???)

Boxplot of differences now shows strong evidence of a difference.

In this case, we reduced the experimental variability relative to the treatment variability.

Environmental Stats : Fall 2016 - J Reuning-Sch

Matched Pair Design

Sometimes, it isn't possible to use the same individual for multiple treatments :

Example : You investigate the effects of two incubation temperatures on tadpoles. After incubation, tadpoles are boiled and death temperature is noted.

Example : you want to compare job skills after a 25 period between people who had pre-school experience and people who don't have pre-school experience.

In this case, it is better to use a matched pair of very similar individuals and give each one a different treatment. Then, you take the difference in their responses to treatment.

Other Experimental Designs

- Factorial Design - two or more treatment factors (we'll discuss this when we do Two-Way ANOVA)
- Analysis of Covariance - take out effect of a continuous factor (we'll cover later in the semester)
- Latin Squares, Unbalanced Designs, Random Effects

Models (take experimental design class),

Toward Statistical Inference

Inference - use information about a sample to draw an inference about the population

Example : A Yale poll of 1000 people reveal that in 2014, about 64\% of Americans believed that Global Warming was actually happening (compare to 22% in 1991, 71% in 2008). We turn the fact that 64% of the sample have this opinion into an estimate that 64\% of all Americans feel this way.

Majority of Americans Think Siobal Warming Is Happpening
 00

\cdots
in in in in in on in in in等

Remember:

Parameter - a fixed number that
describes a population (i.e., $\mu=$
true population mean height). We don't know this number (Gods only)

Statistic - a number that describes a sample (i.e., $\bar{X}=$ sample mean height). We know this number, but the number can (and usually does) change from sample to sample. Use the statistic to estimate the unknown parameter!

Sampling Variability - If we repeated our sampling procedure 'many' times, the same way each time, how much would our statistics change from one sample to the next?

Sampling Distribution of a statistic - the distribution of values of a sample statistic in all possible samples of the same size from a fixed population.

Example : Flip a coin 10 times

Example : Let p be the true proportion of the population that believes in global warming (the PARAMETER).

Suppose a TOTAL of FOUR people live in the U.S. (this is the population). I.e., just this once, we know the entire population. Here are their opinions (known to Gods, who are letting us know just Individual this once . . .)

- We want to estimate p using a sTATISTIC \hat{p}, the sample proportion that believes in global warming.

1	Believe
2	Believe
3	Don't Believe
4	Don't Believe

In this population, $p=0.5$ (the parameter, i.e. the true proportion of the population that believes in global warming).

NOW : Pretend we don't know $p=0.5$, so we take a sample of size $n=2$.
List all possible Simple Random Samples (SRS) of size 2 from this population, and record the sample proportion for each sample (the statistic, \hat{p})

POPULATION

POSSIBLE SAMPLES

Individual	Attitude	Individuals in SRS	Attitude	\hat{p}
		12	B B	1
2	Believe	13	B DB	0.5
3	Don't Believe	14	B DB	0.5
4	Don't Believe	23	B DB	0.5
		24	B DB	0.5
		34	DB DB	0

In terms of probability, this is the sampling distribution for \hat{p} for samples of size two :

The sampling distribution gives

- All possible values of \hat{p}
- The proportion of times \hat{p} takes on each of these values, or the probability that \hat{p} takes each of these values.

FESS10a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer
207

In this case, the
Mean of sampling distribution of $\hat{p}=0.5$
This is also the value of the parameter p, the true proportion of the population that believes in global warming.

If the mean of the sampling distribution of a statistic equals the true value of a parameter, the statistic is said to be an UNBIASED ESTIMATOR of the parameter

Now : what is the variability of the sampling distribution of \hat{p} ?

We'll see formulas for calculating this later. Suffice it to say that the standard deviation of \hat{p} is about 0.32. Trust me.

NOW : Suppose our budget is so small we can only afford a sample of size $n=1$. How does the sampling distribution of \hat{p} change?

POPULATION

POSSIBLE SAMPLES

Individual		Attitude		
1	Believe			
2	Believe			
3	Don't Believe	Individuals in SRS	Attitude	\hat{p}
4	Don't Believe	1	Believe	1
	2	Believe	1	
	3	Don't Believe	0	
4	Don't Believe	0		

Sampling Distribution of \hat{p} for $n=1$:

\hat{p} is still unbiased: Mean of sampling distribution $=0.5$
$=$ true proportion that believe in global warming, p

Variability of the sampling distribution of \hat{p} is clearly 0.5 in this case.

FES510a
Intro Environmental Stats: Fall 2016-J Reuning-Scherer

SO: Mean of sampling distribution of $\hat{p}=.5$ for samples of size 1 or 2.

However:

Standard Dev. of \hat{p} with samples of size $2 \approx 0.3$
Standard Dev. of \hat{p} with samples of size $1 \approx 0.5$

Taking samples of size 2 gives us estimates that are less variable!

BIAS and VARIABILITY

Bias of an estimator

= (mean of sampling distrib.) - (true value of parameter)
Statistic is unbiased if bias $=0$.

Random Binomial Data in MINITAB: use Calc \rightarrow Random Data \rightarrow Binomial (more on the binomial distribution later). The number of trials is 10 , the probability of success is 0.8 , we generate 1000 rows of data.

SPSS: This is what I can figure out : start in excel, make a spreadsheet with the numbers 1 though 1000 in one column. Import into the SPSS. Then use Transform \rightarrow Compute. Use the function RV. BINOM $(10, .8) \quad$ (first number is n, second is p, probability)

Variability of an estimator
$=$ (Standard Deviation of sampling distrib.)

FES510a

To see this, we simulate (make up) data.
Example : Suppose the true proportion of people who believe in global warming is 0.80 , or 80%.

- We now assume that the population is large, and
 we just happen to know the true proportion of believers (i.e. p $=0.80$)
- If we take a sample of size $n=10$, what sort of values for \hat{p} (the sample proportion) might we see? How often will be see these particular values? This is the sampling distribution.
- To estimate the sampling distribution, let's simulate taking many samples of size $n=10$ (how about 1000 such samples), and make a histogram of how often we see each value of \hat{p}.

> Note: this is just an EXERCISE - you would never actually take many samples of size 10, only ONE sample of size 10. We are doing this to see what values (and with what frequency) our sample proportion \hat{p} might take! Another way to think about it : about how far can \hat{p} be from the true value 0.80 just by chance?

Here is the estimated sampling distribution of \hat{p} for samples of size
$n=10$:

Now, suppose we took samples of size $n=100$. How does the estimated sampling distribution of \hat{p} change?

Now, suppose we took samples of size $n=1000$. How does the estimated sampling distribution of \hat{p} change?

PROBABILITY

Chapter 3 in Cartoon Guide -
STRONGLY RECOMMENDED

Probability is crucial to statistical inference

- Inferences are always expressed in terms of probability
(i.e. a "95\% Confidence Interval". 0.95 is the probability of something . . .)

A survey - Suppose exactly 80% of people believe in global warming.

- We take a random sample of size 100
- Expect to see about 80 believe in global warming.
- How likely are we to observe more than 90 who believe in global warming?

An event : set of some possible outcomes :

- An event is a subset of outcomes in S
- Denoted by A (or B or C)

Example : Let the event $A=$ (get one head in 3 tosses)

$$
\begin{aligned}
& \{H H H, H H T, H T H, \text { HTT THH,THT,TTH, TTT }\} \\
& =\{H T T, \text { THT, TTH }\}
\end{aligned}
$$

Example : Let the event $A=$ (Gas mileage between 30 and 40 mpg)

Probability measure : a function (satisfying certain conditions) that assigns a probability (a number between 0 and 1) to each event.

If A is an event, $P(A)$ denotes the probability of A.

SO : What does probability mean, and how do we assign probabilities to outcomes?!? (i.e., how do we define a probability measure?)

Three approaches :

1) Classical
2) Relative Frequency
3) Personal/Subjective Probability (Baysian)
4) Classical(based on gambling): Sometimes, we believe all possible outcomes are equally likely (i.e. the game is fair!). In this case

$$
P(A)=\frac{\# \text { outcomes in } A}{\# \text { outcomes in } S}
$$

Example : Toss a coin once, $S=\{H, T\}$. If $A=\{H\}$, then $P(A)=0.5$

Example : Roll Two Dice $S=\{$ see picture $\}$

If $A=\{$ Sum of Dice at least 10$\}$, then

$$
P(A)=\frac{\# \text { outcomes in } A}{\# \text { outcomes in } S}=\frac{6}{36}=0.167
$$

2) Relative Frequeney [Long Run Frequency]: When an experiment can be repeated, the probability of an event is the proportion of times the event occurs in the long run

Example : What's the probability a radish seed will grow in soil treated with RoundUp? Plant many, many seeds, count the number of times the seed germinates.
3) Personal/Subjective Probability (Baysian): Most
 events in life aren't repeatable. We assign probabilities all the time :

- What's the probability l'll take statistics?
- What's the probability this guy will ask me out on a date?
- What's the probability a huge body of fresh water will halt the gulf stream and lead to an ice age within a century? (some people think high . .)

Now a bit of gambling history

A rich Frenchman, Antoine Gombaud, known as the 'Chevalier de mere' liked to gamble. However, he was confused by certain experiences at the gambling tables. He posed the following question to his mathematician friend, Blaise Pascal in 1654 :

Which is more likely :

1) At least one six in four rolls of a single die
2) At least one double-six in 24 rolls of a pair of dice

Pascal with his friend Pierre de Fermat soon worked out the Chevalier's problem, and in the process developed the algebraic basis of probability theory.

Here is the theory they worked out . . .

Venn Diagrams : Represent Sample Spaces and Events with pictures!

- Think about S as a car windshield
- A is an area in the windshield.
- It's about to start raining.
- Let A be the event that

the first drop lands in the area A.
- Rain is equally likely to fall anywhere on the windshield.

$$
P(A)=\frac{\text { area of } A}{\text { area of } S}
$$

Complement of A

 (raindrop falls in ' $n o t A^{\prime}$)For convenience assume (area of windshield S) = 1 .
So $P(A)=$ area of A.
Remember : $0 \leq P(A) \leq 1$ and $P(S)=1$

Make New Events from Old Events

A or B
(raindrop falls in A or B)
A and B
(raindrop falls in A and B)

Axioms of Probability

(properties of Probability Measures)

- For each event $A, \quad 0 \leq P(A) \leq 1$
- $P(S)=1$, where S is the whole sample space.
- Addition Rule :

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

(Middle shaded area gets counted twice, so we have to subtract this area, which is A and B)

- Disjoint Events : If A and B are disjoint, then

$$
\begin{aligned}
& P(A \text { or } B)=P(A)+ \\
& P(B)
\end{aligned}
$$

i.e. $P(A$ and $B)=0$

Complement rule

$$
P(A)=1-P\left(A^{c}\right)
$$

FES510a

Conditional Probability

Notation: $P(B \mid A)$
Read as "Probability of B given A "
Meaning : Given that A has already happened, what is the probability of B ?

By eyeball : $P(B \mid A)=0.5$

This gives the formal
definition for Conditional
Probability :

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

Or, equivalently

$$
P(A \text { and } B)=P(B \mid A) P(A)
$$

Independence

Two events A and B are independent if being told that A occurred has no effect on the probability that B also occurrs.

Formal Definition :

A and B are independent if

$$
P(B \mid A)=P(B)
$$

Equivalently,

Equivalently

$$
\frac{P(A \text { and } B)}{P(A)}=P(B)
$$

$$
P(A \text { and } B)=P(A) P(B)
$$

FES510a
Intro Environmental Stats : Fall 2016 -J Reuning-Scherer
237
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

WARNING:

Don't confuse Independent with Disjoint
Independent Events : $P(B \mid A)=P(B)$
Disjoint Events: $P(A$ and $B)=0$ or equivalently

$$
P(B \mid A)=0
$$

If events are disjoint, they cannot be independent. If events are independent, they cannot be disjoint.

Example : Toss two coins. Given that the first coin is heads, what is the probability that the second coin is also heads?

Coins are independent so

$$
P(\text { Heads }(\text { Toss 2) } / \text { Heads (Toss } 1))=P(\text { Heads (Toss } 2))
$$

That is, these events are independent.

Example : Roll a pair of dice. Let A be the event that the first die equals 5. Let B be the event that the sum of the dice equals 4 .

$$
P(B)=\frac{3}{36}
$$

(3\&1, 1\&3, or 2\&2; 36 possible outcomes)

$$
P(B \mid A)=0
$$

So

$$
P(A \text { and } B)=P(A) * P(B \mid A)=1 / 6 * 0=0
$$

so : A and B are disjoint (can't roll a 5 and have sum be 4)
However, they are not independent since $P(B \mid A)=P(B)$

Back to the Chevalier's problem

Which is more likely :

1) At least one six in four rolls of a single die
2) At least one double-six in 24 rolls of a pair of dice
3) Let the events A, B, C, D be the events of getting a six on roll $1,2,3$, or 4 , respectively.

We want
$P(A$ or B or C or $D)$
$=P(A)+P(B)+P(C)+P(D)$

- (probability of overlaps)

FES510a

Hmm. Overlaps look hard.

Better idea : USE COMPLEMENT RULE :
Get area of region outside the discs.
$P($ at least one six) $=1-P$ (no sixes)
$=1-P\left(A^{c}\right.$ and B^{c} and C^{c} and $\left.D^{c}\right)$
$=1-P\left(A^{c}\right) P\left(B^{c}\right) P\left(C^{c}\right) P\left(D^{c}\right)$
$=1-\left(\frac{5}{6}\right)^{4}=0.518$
Because dice rolls are independent - the value of one die throw does not change the likelihood of outcomes on subsequent
2) At least one double-six in 24 rolls of a pair of dice

Similar reasoning (use complement rule), gives that
$P($ at least one double $\operatorname{six})=1-P($ no double sixes $)$
$=1-\left(\frac{35}{36}\right)^{24}=0.491$

SO : more likely to get one six in four throws of the dice!

Probability in Practice

(The trick is knowing when to apply which probability rule!)

Suggestions :

- Read the Textbooks. I like them.
- Do problems in textbooks.
- Make a picture. This helps to clarify sample spaces.
- Do some more problems.

Example : Who will you vote for? The Real Clear Politics Average on 8/30/16 for likely voters had the following distribution for a four way race:

- Clinton 42\%
- Trump 38\%
- Johnson 8\%
- Stein 3\%

Suggestion : Check to see if probabilities satisfy requirements : Let A be the event that a person has a particular opinion about 'who is to blame'.

1) For any event $A, 0 \leq P(A) \leq 1$ (all fine here)
2) $P(S)=1$ (umm...)

Probabilities of events so far only add to 91\% - we need another category (none/other : 9\%)

Question : what is the probability that a person picked at random would vote for Johnson or Stein?

Help : ‘or' means $P(A$ or $B)$. Use addition rule
 and then think about whether events are disjoint.
$P(J$ or $S)=P(J)+P(S)-P(J$ and $S)$

Last probability is zero since can't vote for two people-i.e., these events are disjoint :
$P(J$ and $S)=0$. So :

$P(J$ or $S)=P(J)+P(S)=.08+.03=.11$

Question : what is the probability that three randomly chosen people all plan to vote for Trump?

Help : Probabilities multiply ONLY if events are independent. Think carefully about if this is true!

In this case, it is reasonable to assume people are independent (we picked them at random!) so

$$
\begin{gathered}
P(A \text { and } B)=P(A) P(B) \\
P\left(" T \text { " and " } T \text { " and " } T \text { ") }=P(" T ")^{3}=.38^{3}=.055\right.
\end{gathered}
$$

Question : what is the probability that if we choose four people at random, at least one will vote for Clinton?

Help: When you see 'AT LEAST' you should think 'Complement Rule’:
$P(A)=1-P\left(A^{c}\right)$

$P($ At least one Clinton)
$=1-P($ none of four choose Clinton)
$=1-P(\text { one does not choose Clinton })^{4}$
$=1-(.58)^{4}$
$=0.89$

Counting and Probability

Example : In 5 card draw, a straight is a sequence of cards in numerical sequence without regard to suit. An ace may be the low card or the high card in a straight. Show how to compute the probability of getting a straight.

Probability problems can be solved in two ways . . .

1. Counting - based on the CLASSICAL definition of probability :

$$
P(A)=\frac{\# \text { outcomes in } A}{\# \text { outcomes in } S}
$$

In our case :

$$
P(\text { Straight })=\frac{\# \text { ways to get a straight }}{\# \text { ways to pick } 5 \text { cards from } 52}
$$

FES510a

$$
\text { Intro Environmental Stats : Fall } 2016 \text { - J Reuning-Scherer }
$$

You can get these values from Pascal's Triangle $=$ Each entry is the sum of the two numbers just above it

SO : number of ways to choose 5 from 52 cards is

$$
\binom{52}{5}=\frac{52!}{5!(47)!}=2598960
$$

FES510a
Intro Environmental Stats : Fall 2016 - J Reuning-Scherer

Let's start with the denominator :

Number of Ways to Choose k of n things

 For k in $0,1,2, \ldots, n$,$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}, n!=1 * 2 * \ldots *(n-1) * n
$$

(read as "n choose k ")

2. Probability (with a bit of counting) -

Let's calculate

1) The probability of getting dealt a straight in order
2) The number of orders for five cards

The first card can be any card up to 10 in value :

$$
\operatorname{Pr}(\text { first card }<10)=40 / 52
$$

Next cards must be one of the four cards that are one higher in value than the previous card :

$$
\begin{array}{ll}
\operatorname{Pr}(\text { second card })=4 / 51 & \operatorname{Pr}(\text { third card })=4 / 50 \\
\operatorname{Pr}(\text { fourth card })=4 / 49 & \operatorname{Pr}(\text { fifth card })=4 / 48
\end{array}
$$

$$
P(\text { Straightinorder })=\frac{40}{52} \frac{4}{51} \frac{4}{50} \frac{4}{49} \frac{4}{48}
$$

NOW : There are $120=5^{*} 4^{*} 3^{*} 2^{*} 1$ ways to get dealt five particular cards. SO:
$P($ Straight $)=120 * \frac{40}{52} * \frac{4}{51} * \frac{4}{50} * \frac{4}{49} * \frac{4}{48}=.0039$

Bayes Theorem

Example : Uganda, after an extensive safe-sex campaign, has reduced the rate of HIV infection from almost 15\% (early 1990's) of adults to 7.1% (2015, estimated 10\% in cities). (click here to learn more about AIDS in Uganda :
http://www.avert.org/aidsuganda. htm
An oral HIV test is given at random to an adult in the capital Kampala. If a given person has a positive test result, what is the conditional probability that the person indeed has the virus?

Draw a Probability Tree!

Get numerator :

Conditional Probability (the other direction)
$P(A$ and $B)=P(B \mid A) * P(A)$

$$
\begin{aligned}
& =0.9997 * 0.1 \\
& =0.099
\end{aligned}
$$

SO:
That is : a persons risk of having HIV after a positive tests increases from about 10\% to 91\% (still a 9\% chance of not having HIV).

Get denominator :

$$
\begin{aligned}
P(B) & =P(A \& B)+P\left(A^{c} \& B\right) \\
& =(.1)(.9997)+(.9)(.01)=0.1089
\end{aligned}
$$

$$
P(A \mid B)=\frac{P(A \& B)}{P(B)}=\frac{.099}{.1089}=.91
$$

BAYES THEOREM

(What we just did)
Given $P(A), P(B \mid A)$, and $P\left(B \mid A^{c}\right)$.
Want to find a "turned-around" probability like $P(A \mid B)$.

$$
\begin{aligned}
P(B) & =P(A \& B)+P\left(A^{c} \& B\right) \\
& =P(A) P(B \mid A)+P\left(A^{c}\right) P\left(B \mid A^{C}\right)
\end{aligned}
$$

$$
\begin{aligned}
P(A \mid B) & =\frac{P(A \& B)}{P(B)} \\
& =\frac{P(A) P(B \mid A)}{P(A) P(B \mid A)+P\left(A^{c}\right) P\left(B \mid A^{c}\right)}
\end{aligned}
$$

[Know this, don't memorize this . . .]

